Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Crit Care Explor ; 4(4): e0662, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35506015

RESUMEN

The Seraph100 Microbind Affinity Blood Filter (Seraph 100) (ExThera Medical, Martinez, CA) is an extracorporeal therapy that can remove pathogens from blood, including severe acute respiratory syndrome coronavirus 2. The aim of this study was to evaluate safety and efficacy of Seraph 100 treatment for COVID-19. DESIGN: Retrospective cohort study. SETTING: Nine participating ICUs. PATIENTS: COVID-19 patients treated with Seraph 100 (n = 53) and control patients matched by study site (n = 53). INTERVENTION: Treatment with Seraph 100. MEASUREMENTS AND MAIN RESULTS: At baseline, there were no differences between the groups in terms of sex, race/ethnicity, body mass index, and need for mechanical ventilation. However, patients in the Seraph 100 group were younger (median age, 54 yr; interquartile range [IQR], 41-65) compared with controls (median age, 64 yr; IQR, 56-69; p = 0.009). Charlson comorbidity index scores were lower in the Seraph 100 group (2; IQR, 0-3) compared with the control group (3; IQR, 2-4; p = 0.006). Acute Physiology and Chronic Health Evaluation II scores were also lower in Seraph 100 subjects (12; IQR, 9-17) compared with controls (16; IQR, 12-21; p = 0.011). The Seraph 100 group had higher vasopressor-free days with an incidence rate ratio of 1.30 on univariate analysis. This difference was not significant after adjustment. Seraph 100-treated subjects were less likely to die compared with controls (32.1% vs 64.2%; p = 0.001), a difference that remained significant after adjustment. However, no difference in mortality was observed in a post hoc analysis utilizing an external control group. In the full cohort of 86 treated patients, there were 177 total treatments, in which only three serious adverse events were recorded. CONCLUSIONS: Although this study did not demonstrate consistently significant clinical benefit across all endpoints and comparisons, the findings suggest that broad spectrum, pathogen agnostic, blood purification can be safely deployed to meet new pathogen threats while awaiting targeted therapies and vaccines.

2.
Chest ; 144(2): 498-506, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23538783

RESUMEN

BACKGROUND: Cigarette smoke and smoking-induced inflammation decrease cystic fibrosis transmembrane conductance regulator (CFTR) activity and mucociliary transport in the nasal airway and cultured bronchial epithelial cells. This raises the possibility that lower airway CFTR dysfunction may contribute to the pathophysiology of COPD. We compared lower airway CFTR activity in current and former smokers with COPD, current smokers without COPD, and lifelong nonsmokers to examine the relationships between clinical characteristics and CFTR expression and function. METHODS: Demographic, spirometry, and symptom questionnaire data were collected. CFTR activity was determined by nasal potential difference (NPD) and lower airway potential difference (LAPD) assays. The primary measure of CFTR function was the total change in chloride transport (Δchloride-free isoproterenol). CFTR protein expression in endobronchial biopsy specimens was measured by Western blot. RESULTS: Compared with healthy nonsmokers (n = 11), current smokers (n = 17) showed a significant reduction in LAPD CFTR activity (Δchloride-free isoproterenol, -8.70 mV vs -15.9 mV; P = .003). Similar reductions were observed in smokers with and without COPD. Former smokers with COPD (n = 7) showed a nonsignificant reduction in chloride conductance (-12.7 mV). A similar pattern was observed for CFTR protein expression. Univariate analysis demonstrated correlations between LAPD CFTR activity and current smoking, the presence of chronic bronchitis, and dyspnea scores. CONCLUSIONS: Smokers with and without COPD have reduced lower airway CFTR activity compared with healthy nonsmokers, and this finding correlates with disease phenotype. Acquired CFTR dysfunction may contribute to COPD pathogenesis.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Alabama , Biopsia , Western Blotting , Líquido del Lavado Bronquioalveolar/química , Broncoscopía , Disnea , Femenino , Humanos , Masculino , Persona de Mediana Edad , Depuración Mucociliar , Fumar/efectos adversos , Espirometría , Encuestas y Cuestionarios , Contaminación por Humo de Tabaco/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...